πŸ’» Scalar Help – Keywords

Below you will find all the 497 commands and keywords supported by the Scalar math engine. The number of commands per group is presented in the table, syntax details are in the next part of the page.

Command Group# of Commands
Scalar38
Parser Symbols5
Operators9
Boolean Operators19
Binary Relations9
Bitwise Operators6
Unary Functions102
Binary Functions30
3-args Functions15
Variadic Functions23
Calculus Operators15
Constants89
Random Variables32
Units105
Total497
Scalar Calculator Commands - Full List

πŸ‘©πŸ»β€πŸŽ“ Scalar Commands

⚑️ Scalar CommandDescription ✏️
calc exprcalculate expression, return result as double decimal (base=10)
exprcalculate expression, return result as double decimal (base=10)
set name = exprset user defined argument
set namereserve argument name in the namespace
name = exprset user defined argument
set constname = exprset user defined constant
constname = exprset user defined constant
set f(a1,a2,…) = exprset user defined function
set f(a1,a2,…)reserve function name in the namespace
f(a1,a2,…) = exprset user defined function
set randomname = exprset user defined random variable
set randname = exprset user defined random variable
random name = exprset user defined random variable
rand name = exprset user defined random variable
rep expr< ‘expr’ … > for name between/bet expr and expr <by expr>calculate expression in a loop, return delimited list of results
frac exprcalculate expression, return result as fraction
bin exprcalculate expression, return result as binary (base=2)
oct exprcalculate expression, return result as octal (base=8)
hex exprcalculate expression, return result as hexadecimal (base=16)
base.N exprcalculate expression, return result in numeral system base between 1 and 36
factor exprcalculate expression, result is return in the form of prime factors
fact exprcalculate expression, result is return in the form of prime factors
listlist available elements calculated or defined by user
set option name = valueset system option
set opt name = valueset system option
option name = valueset system option
opt name = valueset system option
list optionslist available system options
list optionlist available system options
list optlist available system options
optionslist available system options
infoinformation on system, i.e. version
help <text>help on math syntax
help scalarhelp on scalar syntax
analyze exprrun expression deep syntax analysis
clear allclear all user defined elements
clear name<name … >clear user defined elements
exitexit, close scalar session

πŸ‘©πŸ»β€πŸŽ“ Parser Symbols

⚑️ Parser SymbolDescription ✏️
1, 1.2e-1, 1_2_3, h.fff, b13.12abNumber literals
( … )Left parentheses
( … )Right parentheses
(a1, … ,an)Comma (function parameters)

πŸ‘©πŸ»β€πŸŽ“ Operators

⚑️ OperatorDescription ✏️
a + bAddition
a – bSubtraction
a * bNultiplication
a / bDivision
a^bExponentiation
n!Factorial
a # bModulo function
n%Percentage
a^^nTetration (hyper-4, power tower, exponential tower)

πŸ‘©πŸ»β€πŸŽ“ Boolean Operators

⚑️ Boolean OperatorDescription ✏️
p & qLogical conjunction (AND)
p && qLogical conjunction (AND)
p /\ qLogical conjunction (AND)
p ~& qNAND – Sheffer stroke
p ~&& qNAND – Sheffer stroke
p ~/\ qNAND – Sheffer stroke
p | qLogical disjunction (OR)
p || qLogical disjunction (OR)
p \/ qLogical disjunction (OR)
p ~| qLogical NOR
p ~|| qLogical NOR
p ~\/ qLogical NOR
p (+) qExclusive or (XOR)
p –> qImplication (IMP)
p <– qConverse implication (CIMP)
p -/> qMaterial nonimplication (NIMP)
p </- qConverse nonimplication (CNIMP)
p <-> qLogical biconditional (EQV)
~pNegation

πŸ‘©πŸ»β€πŸŽ“ Binary Relations

⚑️ Binary RelationDescription ✏️
a = bEquality
a == bEquality
a <> bInequation
a ~= bInequation
a != bInequation
a < bLower than
a > bGreater than
a <= bLower or equal
a >= bGreater or equal


πŸ‘©πŸ»β€πŸŽ“ Bitwise Operators

⚑️ Bitwise OperatorDescription ✏️
@~aBitwise unary complement
a @& bBitwise AND
a @^ bBitwise exclusive OR
a @| bBitwise inclusive OR
a @<< bSigned left shift
a @>> bSigned right shift

πŸ‘©πŸ»β€πŸŽ“ Unary Functions

⚑️ Unary FunctionDescription ✏️
sin(x)Trigonometric sine function
cos(x)Trigonometric cosine function
tg(x)Trigonometric tangent function
tan(x)Trigonometric tangent function
ctg(x)Trigonometric cotangent function
cot(x)Trigonometric cotangent function
ctan(x)Trigonometric cotangent function
sec(x)Trigonometric secant function
csc(x)Trigonometric cosecant function
cosec(x)Trigonometric cosecant function
asin(x)Inverse trigonometric sine function
arsin(x)Inverse trigonometric sine function
arcsin(x)Inverse trigonometric sine function
acos(x)Inverse trigonometric cosine function
arcos(x)Inverse trigonometric cosine function
arccos(x)Inverse trigonometric cosine function
atg(x)Inverse trigonometric tangent function
atan(x)Inverse trigonometric tangent function
arctg(x)Inverse trigonometric tangent function
arctan(x)Inverse trigonometric tangent function
actg(x)Inverse trigonometric cotangent function
acot(x)Inverse trigonometric cotangent function
actan(x)Inverse trigonometric cotangent function
arcctg(x)Inverse trigonometric cotangent function
arccot(x)Inverse trigonometric cotangent function
arcctan(x)Inverse trigonometric cotangent function
ln(x)Natural logarithm function (base e)
log2(x)Binary logarithm function (base 2)
log10(x)Common logarithm function (base 10)
rad(x)Degrees to radians function
exp(x)Exponential function
sqrt(x)Squre root function
sinh(x)Hyperbolic sine function
cosh(x)Hyperbolic cosine function
tgh(x)Hyperbolic tangent function
tanh(x)Hyperbolic tangent function
coth(x)Hyperbolic cotangent function
ctgh(x)Hyperbolic cotangent function
ctanh(x)Hyperbolic cotangent function
sech(x)Hyperbolic secant function
csch(x)Hyperbolic cosecant function
cosech(x)Hyperbolic cosecant function
deg(x)Radians to degrees function
abs(x)Absolut value function
sgn(x)Signum function
floor(x)Floor function
ceil(x)Ceiling function
not(x)Negation function
asinh(x)Inverse hyperbolic sine function
arsinh(x)Inverse hyperbolic sine function
arcsinh(x)Inverse hyperbolic sine function
acosh(x)Inverse hyperbolic cosine function
arcosh(x)Inverse hyperbolic cosine function
arccosh(x)Inverse hyperbolic cosine function
atgh(x)Inverse hyperbolic tangent function
atanh(x)Inverse hyperbolic tangent function
arctgh(x)Inverse hyperbolic tangent function
arctanh(x)Inverse hyperbolic tangent function
acoth(x)Inverse hyperbolic cotangent function
actgh(x)Inverse hyperbolic cotangent function
actanh(x)Inverse hyperbolic cotangent function
arcoth(x)Inverse hyperbolic cotangent function
arccoth(x)Inverse hyperbolic cotangent function
arcctgh(x)Inverse hyperbolic cotangent function
arcctanh(x)Inverse hyperbolic cotangent function
asech(x)Inverse hyperbolic secant function
arsech(x)Inverse hyperbolic secant function
arcsech(x)Inverse hyperbolic secant function
acsch(x)Inverse hyperbolic cosecant function
arcsch(x)Inverse hyperbolic cosecant function
arccsch(x)Inverse hyperbolic cosecant function
acosech(x)Inverse hyperbolic cosecant function
arcosech(x)Inverse hyperbolic cosecant function
arccosech(x)Inverse hyperbolic cosecant function
Sa(x)Sinc function (normalized)
sinc(x)Sinc function (normalized)
Sinc(x)Sinc function (unnormalized)
Bell(n)Bell number
Luc(n)Lucas number
Fib(n)Fibonacci number
harm(n)Harmonic number
ispr(n)Prime number test (is number a prime?)
Pi(n)Prime-counting function – Pi(x)
Ei(x)Exponential integral function (non-elementary specialfunction) – usage example: Ei(x)
li(x)Logarithmic integral function (non-elementary specialfunction) – usage example: li(x)
Li(x)Offset logarithmic integral function (non-elementaryspecial function) – usage example: Li(x)
erf(x)Gauss error function (non-elementary special function) – usage example: 2 + erf(x)
erfc(x)Gauss complementary error function (non-elementary specialfunction) – usage example: 1 – erfc(x)
erfInv(x)Inverse Gauss error function (non-elementary specialfunction) – usage example: erfInv(x)
erfcInv(x)Inverse Gauss complementary error function (non-elementaryspecial function) – usage example: erfcInv(x)
ulp(x)Unit in The Last Place – ulp(0.1)
isNaN(x)Returns true = 1 if value is a Not-a-Number (NaN), false =0 otherwise – usage example: isNaN(x)
ndig10(x)Number of digits in numeral system with base 10
nfact(x)Prime decomposition – number of distinct prime factors
arcsec(x)Inverse trigonometric secant
arccsc(x)Inverse trigonometric cosecant
Gamma(x)Gamma special function Ξ“(s)
LambW0(x)Lambert-W special function, principal branch 0, alsocalled the omega function or product logarithm
LambW1(x)Lambert-W special function, branch -1, also called the omega function or product logarithm
sgnGamma(x)Signum of Gamma special function, Ξ“(s)
logGamma(x)Log Gamma special function, lnΞ“(s)
diGamma(x)Digamma function as the logarithmic derivative of theGamma special function, ψ(x)

πŸ‘©πŸ»β€πŸŽ“ Binary Functions

⚑️ Binary FunctionDescription ✏️
log(a, b)Logarithm function
mod(a, b)Modulo function
C(n, k)Binomial coefficient function, number of k-combinations that can be drawn from n-elements set
nCk(n,k)Binomial coefficient function, number of k-combinations that can be drawn from n-elements set
Bern(m, n)Bernoulli numbers
Stirl1(n, k)Stirling numbers of the first kind
Stirl2(n, k)Stirling numbers of the second kind
Worp(n, k)Worpitzky number
Euler(n, k)Euler number
KDelta(i, j)Kronecker delta
EulerPolEulerPol
Harm(x, n)Harmonic number
rUni(a, b)Random variable – Uniform continuous distribution U(a,b),usage example: 2*rUni(2,10)
rUnid(a, b)Random variable – Uniform discrete distribution U{a,b}, usage example: 2*rUnid(2,100)
round(x, n)Half-up rounding, usage examples: round(2.2, 0) = 2,round(2.6, 0) = 3, round(2.66,1) = 2.7
rNor(mean, stdv)Random variable – Normal distribution N(m,s) m – mean, s -stddev, usage example: 3*rNor(0,1)
ndig(number, base)Number of digits representing the number in numeral systemwith given base
dig10(num, pos)Digit at position 1 … n (left -> right) or 0 … -(n-1)(right -> left) – base 10 numeral system
factval(number, factorid)Prime decomposition – factor value at position between 1… nfact(n) – ascending order by factor value
factexp(number, factorid)Prime decomposition – factor exponent / multiplicity atposition between 1 … nfact(n) – ascending order by factor value
root(rootorder, number)N-th order root of a number
GammaL(s,x)Lower incomplete gamma special function, Ξ³(s,x)
GammaU(s,x)Upper incomplete Gamma special function, Ξ“(s,x)
GammaP(s,x)Lower regularized P gamma special function, P(s,x)
GammaRegL(s,x)Lower regularized P gamma special function, P(s,x)
GammaQ(s,x)Upper regularized Q Gamma special function, Q(s,x)
GammaRegU(s,x)Upper regularized Q Gamma special function, Q(s,x)
nPk(n,k)Number of k-permutations that can be drawn from n-elementsset
Beta(x,y)The Beta special function B(x,y), also called the Euler integral of the first kind
logBeta(x,y)The Log Beta special function ln B(x,y), also calledthe Log Euler integral of the first kind, ln B(x,y)

πŸ‘©πŸ»β€πŸŽ“ 3-args Functions

⚑️ 3-args FunctionDescription ✏️
if( cond, expr-if-true, expr-if-false )If function
chi(x, a, b)Characteristic function for x in (a,b)
CHi(x, a, b)Characteristic function for x in [a,b]
Chi(x, a, b)Characteristic function for x in [a,b)
cHi(x, a, b)Characteristic function for x in (a,b]
pUni(x, a, b)Probability distribution function – Uniform continuous distribution U(a,b)
cUni(x, a, b)Cumulative distribution function – Uniform continuousdistribution U(a,b)
qUni(q, a, b)Quantile function (inverse cumulative distribution function) – Uniform continuous distribution U(a,b)
pNor(x, mean, stdv)Probability distribution function – Normal distribution N(m,s)
cNor(x, mean, stdv)Cumulative distribution function – Normal distribution N(m,s)
qNor(q, mean, stdv)Quantile function (inverse cumulative distribution function)
dig(num, pos, base)Digit at position 1 … n (left -> right) or 0 … -(n-1)(right -> left) – numeral system with given base
BetaInc(x,a,b)The incomplete beta special function B(x; a, b), alsocalled the incomplete Euler integral of the first kind
BetaI(x,a,b)The regularized incomplete beta (or regularized beta)special function I(x; a, b), also called the regularized incomplete Euler integral of the first kind
BetaReg(x,a,b)The regularized incomplete beta (or regularized beta)special function I(x; a, b), also called the regularized incomplete Euler integral of the first kind

πŸ‘©πŸ»β€πŸŽ“ Variadic Functions

⚑️ Variadic FunctionDescription ✏️
iff( cond-1, expr-1; … ; cond-n, expr-n )If function
min(a1, …, an)Minimum function
max(a1, …, an)Maximum function
ConFrac(a1, …, an)Continued fraction
ConPol(a1, …, an)Continued polynomial
gcd(a1, …, an)Greatest common divisor
lcm(a1, …, an)Least common multiple
add(a1, …, an)Summation operator
multi(a1, …, an)Multiplication
mean(a1, …, an)Mean / average value
var(a1, …, an)Bias-corrected sample variance
std(a1, …, an)Bias-corrected sample standard deviation
rList(a1, …, an)Random number from given list of numbers
coalesce(a1, …, an)Returns the first non-NaN value
or(a1, …, an)Logical disjunction (OR) – variadic
and(a1, …, an)Logical conjunction (AND) – variadic
xor(a1, …, an)Exclusive or (XOR) – variadic
argmin(a1, …, an)Arguments / indices of the minima
argmax(a1, …, an)Arguments / indices of the maxima
med(a1, …, an)The sample median
mode(a1, …, an)Mode – the value that appears most often
base(b, d1, …, dn)Returns number in given numeral system base represented bylist of digits
ndist(v1, …, vn)Number of distinct values

πŸ‘©πŸ»β€πŸŽ“ Calculus Operators

⚑️ Calculus OperatorDescription ✏️
sum( i, from, to, expr , <by> )Summation operator – SIGMA
prod( i, from, to, expr, <by> )Product operator – PI
int( expr, arg, from, to )Definite integral operator
der( expr, arg, <point> )Derivative operator
der-( expr, arg, <point> )Left derivative operator
der+( expr, arg, <point> )Right derivative operator
dern( expr, n, arg )n-th derivative operator
diff( expr, arg, <delta> )Forward difference operator
difb( expr, arg, <delta> )Backward difference operator
avg( i, from, to, expr , <by> )Average operator
vari( i, from, to, expr, <by> )Bias-corrected sample variance operator
stdi( i, from, to, expr, <by> )Bias-corrected sample standard deviation operator
mini( i, from, to, expr , <by> )Minimum value
maxi( i, from, to, expr, <by> )Maximum value
solve( expr, arg, from, to )f(x) = 0 equation solving, function root finding

πŸ‘©πŸ»β€πŸŽ“ Constants

⚑️ Constant ValueDescription ✏️
piPi, Archimedes’ constant or Ludolph’s number
eNapier’s constant, or Euler’s number, base of Naturallogarithm
[gam]Euler-Mascheroni constant
[phi]Golden ratio
[PN]Plastic constant
[B*]Embree-Trefethen constant
[F’d]Feigenbaum constant alfa
[F’a]Feigenbaum constant delta
[C2]Twin prime constant
[M1]Meissel-Mertens constant
[B2]Brun’s constant for twin primes
[B4]Brun’s constant for prime quadruplets
[BN’L]de Bruijn-Newman constant
[Kat]Catalan’s constant
[K*]Landau-Ramanujan constant
[K.]Viswanath’s constant
[B’L]Legendre’s constant
[RS’m]Ramanujan-Soldner constant
[EB’e]Erdos-Borwein constant
[Bern]Bernstein’s constant
[GKW’l]Gauss-Kuzmin-Wirsing constant
[HSM’s]Hafner-Sarnak-McCurley constant
[lm]Golomb-Dickman constant
[Cah]Cahen’s constant
[Ll]Laplace limit
[AG]Alladi-Grinstead constant
[L*]Lengyel’s constant
[L.]Levy’s constant
[Dz3]Apery’s constant
[A3n]Mills’ constant
[Bh]Backhouse’s constant
[Pt]Porter’s constant
[L2]Lieb’s square ice constant
[Nv]Niven’s constant
[Ks]Sierpinski’s constant
[Kh]Khinchin’s constant
[FR]Fransen-Robinson constant
[La]Landau’s constant
[P2]Parabolic constant
[Om]Omega constant
[MRB]MRB constant
[li2]li(2) – Logarithmic integral function at x=2
[EG]Gompertz constant
<Physical Constant> Light speed in vacuum [m/s] (m=1,s=1)
[G.]<Physical Constant> Gravitational constant (m=1, kg=1, s=1)]
[g]<Physical Constant> Gravitational acceleration on Earth [m/s^2] (m=1, s=1)
[hP]<Physical Constant> Planck constant (m=1, kg=1, s=1)
[h-]<Physical Constant> Reduced Planck constant / Dirac constant (m=1, kg=1, s=1)]
[lP]<Physical Constant> Planck length [m] (m=1)
[mP]<Physical Constant> Planck mass [kg] (kg=1)
[tP]<Physical Constant> Planck time [s] (s=1)
[ly]<Astronomical Constant> Light year [m] (m=1)
[au]<Astronomical Constant> Astronomical unit [m] (m=1)
[pc]<Astronomical Constant> Parsec [m] (m=1)
[kpc]<Astronomical Constant> Kiloparsec [m] (m=1)
[Earth-R-eq]<Astronomical Constant> Earth equatorial radius [m] (m=1)
[Earth-R-po]<Astronomical Constant> Earth polar radius [m] (m=1)
[Earth-R]<Astronomical Constant> Earth mean radius (m=1)
[Earth-M]<Astronomical Constant> Earth mass [kg] (kg=1)
[Earth-D]<Astronomical Constant> Earth-Sun distance – semi major axis [m] (m=1)
[Moon-R]<Astronomical Constant> Moon mean radius [m] (m=1)
[Moon-M]<Astronomical Constant> Moon mass [kg] (kg=1)
[Moon-D]<Astronomical Constant> Moon-Earth distance – semi major axis [m] (m=1)
[Solar-R]<Astronomical Constant> Solar mean radius [m] (m=1)
[Solar-M]<Astronomical Constant> Solar mass [kg] (kg=1)
[Mercury-R]<Astronomical Constant> Mercury mean radius [m] (m=1)
[Mercury-M]<Astronomical Constant> Mercury mass [kg] (kg=1)
[Mercury-D]<Astronomical Constant> Mercury-Sun distance – semi majoraxis [m] (m=1)
[Venus-R]<Astronomical Constant> Venus mean radius [m] (m=1)
[Venus-M]<Astronomical Constant> Venus mass [kg] (kg=1)
[Venus-D]<Astronomical Constant> Venus-Sun distance – semi major axis [m] (m=1)
[Mars-R]<Astronomical Constant> Mars mean radius [m] (m=1)
[Mars-M]<Astronomical Constant> Mars mass [kg] (kg=1)
[Mars-D]<Astronomical Constant> Mars-Sun distance – semi major axis [m] (m=1)
[Jupiter-R]<Astronomical Constant> Jupiter mean radius [m] (m=1)
[Jupiter-M]<Astronomical Constant> Jupiter mass [kg] (kg=1)
[Jupiter-D]<Astronomical Constant> Jupiter-Sun distance – semi majoraxis [m] (m=1)
[Saturn-R]<Astronomical Constant> Saturn mean radius [m] (m=1)
[Saturn-M]<Astronomical Constant> Saturn mass [kg] (kg=1)
[Saturn-D]<Astronomical Constant> Saturn-Sun distance – semi major axis [m] (m=1)
[Uranus-R]<Astronomical Constant> Uranus mean radius [m] (m=1)
[Uranus-M]<Astronomical Constant> Uranus mass [kg] (kg=1)
[Uranus-D]<Astronomical Constant> Uranus-Sun distance – semi major axis [m] (m=1)
[Neptune-R]<Astronomical Constant> Neptune mean radius [m] (m=1)
[Neptune-M]<Astronomical Constant> Neptune mass [kg] (kg=1)
[Neptune-D]<Astronomical Constant> Neptune-Sun distance – semi majoraxis [m] (m=1)
[true]Boolean True represented as double, [true] = 1
[false]Boolean False represented as double, [false] = 0
[NaN]Not-a-Number

πŸ‘©πŸ»β€πŸŽ“ Random Variables

⚑️ Random VariableDescription ✏️
[Uni]Random variable – Uniform continuous distribution U(0,1)
[Int]Random variable – random integer
[Int1]Random variable – random integer – Uniform discrete distribution U{-10^1, 10^1}
[Int2]Random variable – random integer – Uniform discrete distribution U{-10^2, 10^2}
[Int3]Random variable – random integer – Uniform discrete distribution U{-10^3, 10^3}
[Int4]Random variable – random integer – Uniform discrete distribution U{-10^4, 10^4}
[Int5]Random variable – random integer – Uniform discrete distribution U{-10^5, 10^5}
[Int6]Random variable – random integer – Uniform discrete distribution U{-10^6, 10^6}
[Int7]Random variable – random integer – Uniform discrete distribution U{-10^7, 10^7}
[Int8]Random variable – random integer – Uniform discrete distribution U{-10^8, 10^8}
[Int9]Random variable – random integer – Uniform discrete distribution U{-10^9, 10^9}
[nat]Random variable – random natural number including 0
[nat1]Random variable – random natural number including 0 -Uniform discrete distribution U{0, 10^1}
[nat2]Random variable – random natural number including 0 -Uniform discrete distribution U{0, 10^2}
[nat3]Random variable – random natural number including 0 -Uniform discrete distribution U{0, 10^3}
[nat4]Random variable – random natural number including 0 -Uniform discrete distribution U{0, 10^4}
[nat5]Random variable – random natural number including 0 -Uniform discrete distribution U{0, 10^5}
[nat6]Random variable – random natural number including 0 -Uniform discrete distribution U{0, 10^6}
[nat7]Random variable – random natural number including 0 -Uniform discrete distribution U{0, 10^7}
[nat8]Random variable – random natural number including 0 -Uniform discrete distribution U{0, 10^8}
[nat9]Random variable – random natural number including 0 -Uniform discrete distribution U{0, 10^9}
[Nat]Random variable – random natural number
[Nat1]Random variable – random natural number – Uniform discretedistribution U{1, 10^1}
[Nat2]Random variable – random natural number – Uniform discretedistribution U{1, 10^2}
[Nat3]Random variable – random natural number – Uniform discretedistribution U{1, 10^3}
[Nat4]Random variable – random natural number – Uniform discretedistribution U{1, 10^4}
[Nat5]Random variable – random natural number – Uniform discretedistribution U{1, 10^5}
[Nat6]Random variable – random natural number – Uniform discretedistribution U{1, 10^6}
[Nat7]Random variable – random natural number – Uniform discretedistribution U{1, 10^7}
[Nat8]Random variable – random natural number – Uniform discretedistribution U{1, 10^8}
[Nat9]Random variable – random natural number – Uniform discretedistribution U{1, 10^9}
[Nor]Random variable – Normal distribution N(0,1)

πŸ‘©πŸ»β€πŸŽ“ Units

⚑️ UnitDescription ✏️
[%]<Ratio, Fraction> Percentage = 0.01
[%%]<Ratio, Fraction> Promil, Per mille = 0.001
[Y]<Metric prefix> Septillion / Yotta = 10^24
[sept]<Metric prefix> Septillion / Yotta = 10^24
[Z]<Metric prefix> Sextillion / Zetta = 10^21
[sext]<Metric prefix> Sextillion / Zetta = 10^21
[E]<Metric prefix> Quintillion / Exa = 10^18
[quint]<Metric prefix> Quintillion / Exa = 10^18
[P]<Metric prefix> Quadrillion / Peta = 10^15
[quad]<Metric prefix> Quadrillion / Peta = 10^15
[T]<Metric prefix> Trillion / Tera = 10^12
[tril]<Metric prefix> Trillion / Tera = 10^12
[G]<Metric prefix> Billion / Giga = 10^9
[bil]<Metric prefix> Billion / Giga = 10^9
[M]<Metric prefix> Million / Mega = 10^6
[mil]<Metric prefix> Million / Mega = 10^6
[k]<Metric prefix> Thousand / Kilo = 10^3
[th]<Metric prefix> Thousand / Kilo = 10^3
[hund]<Metric prefix> Hundred / Hecto = 10^2
[hecto]<Metric prefix> Hundred / Hecto = 10^2
[ten]<Metric prefix> Ten / Deca = 10
[deca]<Metric prefix> Ten / Deca = 10
[deci]<Metric prefix> Tenth / Deci = 0.1
[centi]<Metric prefix> Hundredth / Centi = 0.01
[milli]<Metric prefix> Thousandth / Milli = 0.001
[mic]<Metric prefix> Millionth / Micro = 10^-6
[n]<Metric prefix> Billionth / Nano = 10^-9
[p]<Metric prefix> Trillionth / Pico = 10^-12
[f]<Metric prefix> Quadrillionth / Femto = 10^-15
[a]<Metric prefix> Quintillionth / Atoo = 10^-18
[z]<Metric prefix> Sextillionth / Zepto = 10^-21
[y]<Metric prefix> Septillionth / Yocto = 10^-24
[m]<Unit of length> Metre / Meter (m=1)
[km]<Unit of length> Kilometre / Kilometer (m=1)
[cm]<Unit of length> Centimetre / Centimeter (m=1)
[mm]<Unit of length> Millimetre / Millimeter (m=1)
[inch]<Unit of length> Inch (m=1)
[yd]<Unit of length> Yard (m=1)
[ft]<Unit of length> Feet (m=1)
[mile]<Unit of length> Mile (m=1)
[nmi]<Unit of length> Nautical mile (m=1)
[m2]<Unit of area> Square metre / Square meter (m=1)
[cm2]<Unit of area> Square centimetre / Square centimeter(m=1)
[mm2]<Unit of area> Square millimetre / Square millimeter(m=1)
[are]<Unit of area> Are (m=1)
[ha]<Unit of area> Hectare (m=1)
[acre]<Unit of area> Acre (m=1)
[km2]<Unit of area> Square kilometre / Square kilometer (m=1)
[mm3]<Unit of volume> Cubic millimetre / Cubic millimeter(m=1)
[cm3]<Unit of volume> Cubic centimetre / Cubic centimeter(m=1)
[m3]<Unit of volume> Cubic metre / Cubic meter (m=1)
[km3]<Unit of volume> Cubic kilometre / Cubic kilometer (m=1)
[ml]<Unit of volume> Millilitre / Milliliter (m=1)
[l]<Unit of volume> Litre / Liter (m=1)
[gall]<Unit of volume> Gallon (m=1)
[pint]<Unit of volume> Pint (m=1)
[s]<Unit of time> Second (s=1)
[ms]<Unit of time> Millisecond (s=1)
[min]<Unit of time> Minute (s=1)
[h]<Unit of time> Hour (s=1)
[day]<Unit of time> Day (s=1)
[week]<Unit of time> Week (s=1)
[yearj]<Unit of time> Julian year = 365.25 days (s=1)
[kg]<Unit of mass> Kilogram (kg=1)
[gr]<Unit of mass> Gram (kg=1)
[mg]<Unit of mass> Milligram (kg=1)
[dag]<Unit of mass> Decagram (kg=1)
[t]<Unit of mass> Tonne (kg=1)
[oz]<Unit of mass> Ounce (kg=1)
[lb]<Unit of mass> Pound (kg=1)
[b]<Unit of information> Bit (bit=1)
[kb]<Unit of information> Kilobit (bit=1)
[Mb]<Unit of information> Megabit (bit=1)
[Gb]<Unit of information> Gigabit (bit=1)
[Tb]<Unit of information> Terabit (bit=1)
[Pb]<Unit of information> Petabit (bit=1)
[Eb]<Unit of information> Exabit (bit=1)
[Zb]<Unit of information> Zettabit (bit=1)
[Yb]<Unit of information> Yottabit (bit=1)
[B]<Unit of information> Byte (bit=1)
[kB]<Unit of information> Kilobyte (bit=1)
[MB]<Unit of information> Megabyte (bit=1)
[GB]<Unit of information> Gigabyte (bit=1)
[TB]<Unit of information> Terabyte (bit=1)
[PB]<Unit of information> Petabyte (bit=1)
[EB]<Unit of information> Exabyte (bit=1)
[ZB]<Unit of information> Zettabyte (bit=1)
[YB]<Unit of information> Yottabyte (bit=1)
[J]<Unit of energy> Joule (m=1, kg=1, s=1)
[eV]<Unit of energy> Electronovolt (m=1, kg=1, s=1)
[keV]<Unit of energy> Kiloelectronovolt (m=1, kg=1, s=1)
[MeV]<Unit of energy> Megaelectronovolt (m=1, kg=1, s=1)
[GeV]<Unit of energy> Gigaelectronovolt (m=1, kg=1, s=1)
[TeV]<Unit of energy> Teraelectronovolt (m=1, kg=1, s=1)
[m/s]<Unit of speed> Metre / Meter per second (m=1, s=1)
[km/h]<Unit of speed> Kilometre / Kilometer per hour (m=1,s=1)
[mi/h]<Unit of speed> Mile per hour (m=1, s=1)
[knot]<Unit of speed> Knot (m=1, s=1)
[m/s2]<Unit of acceleration> Metre / Meter per square second (m=1, s=1)
[km/h2]<Unit of acceleration> Kilometre / Kilometer per square hour (m=1, s=1)
[mi/h2]<Unit of acceleration> Mile per square hour (m=1, s=1)
[rad]<Unit of angle> Radian (rad=1)
[deg]<Unit of angle> Degree of arc (rad=1)
[‘]<Unit of angle> Minute of arc (rad=1)
[”]<Unit of angle> Second of arc (rad=1)

Scalar in action

Scalar Lite (Free)

Get it on Google Play

Scalar Pro

Get it on Google Play